
pyrs-resource Documentation
Release 0.2.0

Csaba Palankai

August 23, 2015

Contents

1 What is this package for 3

2 Nutshell (notice that, it would be the achivement) 5

3 Features 7

4 Installation 9

5 Dependencies 11

6 Important caveats 13

7 The ecosystem 15

8 Contribution 17

9 Contents: 19
9.1 Application . 19
9.2 Resource . 20
9.3 Response handling . 20
9.4 Response handling . 20
9.5 Error handling . 21
9.6 Hooks . 22
9.7 Configuration . 23

10 License 25
10.1 Indices and tables . 28

Python Module Index 29

i

ii

pyrs-resource Documentation, Release 0.2.0

Project homepage: https://github.com/palankai/pyrs-resource

Documentation: http://pyrs-resource.readthedocs.org

Issue tracking: https://github.com/palankai/pyrs-resource/issues

Contents 1

https://github.com/palankai/pyrs-resource
http://pyrs-resource.readthedocs.org
https://github.com/palankai/pyrs-resource/issues

pyrs-resource Documentation, Release 0.2.0

2 Contents

CHAPTER 1

What is this package for

In the python world there are many RESTFul framework. Some of them based on Django others are based on Flask.
I’ve tried some but I had the feeling, I want to learn one, the use with Django or Flask or even Odoo. And I don’t
mention sometimes I found them not flexible enough. So, I’ve decided write my own independent framework what
anybody can use in at least the mentioned 3 different worlds.

3

pyrs-resource Documentation, Release 0.2.0

4 Chapter 1. What is this package for

CHAPTER 2

Nutshell (notice that, it would be the achivement)

from pyrs import resource
from pyrs.resource import GET

class UserResouce:

@GET(response=ArrayOfUserSchema)
def get_users(self):

return User.objects.all()

@PUT(path='/<int:user_id>', response=UserSchema, request=UserSchema)
def update_user(self, user_id, body):

user = get_object_or_404(User, pk=user_id)
user.name = body['name']
user.email = body['email']
user.save()
return user

app = resource.Application()
app.add('/user', UserResouce)

In this example I’ve shown Django (like) example. The schema is based on pyrs.schema. Even if I tend to use that
framework, you would be able to use any other.

5

http://pyrs-schema.readthedocs.org/

pyrs-resource Documentation, Release 0.2.0

6 Chapter 2. Nutshell (notice that, it would be the achivement)

CHAPTER 3

Features

• Using simple classes or even functions (no inheritance)

• Wrapped error handling, errors can be serialised

• Extensible API

• Works with python 2.7, 3.3, 3.4 (tested against these versions)

• Hooks for extending the dispatching process

7

pyrs-resource Documentation, Release 0.2.0

8 Chapter 3. Features

CHAPTER 4

Installation

$ pip install pyrs-resource

9

pyrs-resource Documentation, Release 0.2.0

10 Chapter 4. Installation

CHAPTER 5

Dependencies

See requirements.txt for details, but mainly depends on Werkzeug. I’m using that project routing capabilities. Also
depends on pyrs.schema as I mentioned in nutshell section.

11

http://werkzeug.pocoo.org/

pyrs-resource Documentation, Release 0.2.0

12 Chapter 5. Dependencies

CHAPTER 6

Important caveats

This code right now really in beta state. I plan to release soon as possible a completely working code, but right now
it’s just shaping.

13

pyrs-resource Documentation, Release 0.2.0

14 Chapter 6. Important caveats

CHAPTER 7

The ecosystem

This work is part of pyrs framework. The complete framework follow the same intention to implement flexible
solution.

15

https://github.com/palankai/pyrs

pyrs-resource Documentation, Release 0.2.0

16 Chapter 7. The ecosystem

CHAPTER 8

Contribution

I really welcome any comments! I would be happy if you fork my code or create pull requests. I’ve already really
strong opinions what I want to achieve and how, though any help would be welcomed.

Feel free drop a message to me!

17

pyrs-resource Documentation, Release 0.2.0

18 Chapter 8. Contribution

CHAPTER 9

Contents:

9.1 Application

class pyrs.resource.base.App(hooks=None, resources=None, **config)
Bases: object

Resource application, provide routing and execution

Parameters

• hooks (list) – List of hook classes (check hooks)

• resources (list) – Expected items (path, resource class, [namespace])

• config – optional configuration values (updated conf)

_add_class(path, resource, prefix=’‘)

_add_function(path, resource, prefix=’‘)

_make_rule(path, methods, endpoint)

add(path, resource, prefix=’‘)

add_rule(rule)

config = None
Store the configuration (copied from conf)

dispatch(path_info, method, query=None, body=None, headers=None, cookies=None, ses-
sion=None)

handle_client_exceptions(ex, path_info, method, opts=None, req=None)

handle_exception(ex, opts, req)

hooks = []

resources = []
List of rules, will be extended by App(resources=[]) Tuple should be presented: (‘path’, Resource, [names-
pace])

set_function(name, resource)

setup_hooks()

transform_exception(ex)

19

https://docs.python.org/library/functions.html#object
https://docs.python.org/library/functions.html#list
https://docs.python.org/library/functions.html#list

pyrs-resource Documentation, Release 0.2.0

9.2 Resource

pyrs.resource.resource.DELETE(_func=None, **kwargs)
Decorator function Ensure the given function will be available for GET method

pyrs.resource.resource.GET(_func=None, **kwargs)
Decorator function Ensure the given function will be available for GET method

pyrs.resource.resource.PATCH(_func=None, **kwargs)
Decorator function Ensure the given function will be available for GET method

pyrs.resource.resource.POST(_func=None, **kwargs)
Decorator function Ensure the given function will be available for POST method

pyrs.resource.resource.PUT(_func=None, **kwargs)
Decorator function Ensure the given function will be available for GET method

pyrs.resource.resource.RPC(_func=None, **kwargs)
Decorator function Ensure the given function will be available for POST method This action tend to use as
Remote procedure call

pyrs.resource.resource.endpoint(_func=None, path=’/’, **kwargs)
Deadly simple decorator, add options to the given function. Can be user with or without any keyword argu-
ments. The default options would contain the path and the name of the function. Based on configuration:
conf.decorate

9.3 Response handling

The entry point of the application wrapped by the Request. The request tend to be immutable.

Request actually is a builder, it builds request arguments for the endpoint, can hold extra information about the appli-
cation about the whole environment and can be passed to the endpoint as well.

class pyrs.resource.request.Request(opts, app=None, path=None, query=None, body=None,
headers=None, auth=None, cookies=None, session=None)

Bases: object

_get_inject(name, force_kwargs=False)

_inject(inject, value, opt=None)

_parse_value(value, opt)
Parse a value based on options. The option can be None means shouldn’t be not parsed Can be an instance
(or a subclass) of schema.Object. In that case the schema load will be executed

_setup_injects()

build()

9.4 Response handling

class pyrs.resource.response.Response(content, app=None, opts=None, request=None)
Bases: object

Generic response class

build()

20 Chapter 9. Contents:

https://docs.python.org/library/functions.html#object
https://docs.python.org/library/functions.html#object

pyrs-resource Documentation, Release 0.2.0

setup()

9.5 Error handling

exception pyrs.resource.errors.ClientError(*args, **details)
Bases: pyrs.resource.errors.Error

Generic Client Error. Normally the client errors have 4xx status codes.

status = 400

class pyrs.resource.errors.DetailsSchema(extend=None, **attrs)
Bases: pyrs.schema.types.Object

Details part of the error schema. Additional properties possible.

_attrs = OrderedDict([(‘additional’, True)])

_definitions = None

_fields = OrderedDict([(‘traceback’, <pyrs.schema.types.Array object at 0x7f42d0c8d4e0>), (‘args’, <pyrs.schema.types.Array object at 0x7f42d0c8d7f0>)])

exception pyrs.resource.errors.Error(*args, **details)
Bases: Exception

This is the base exception of this framework. The response based on this exception will be a JSON data

description = None
Description of error. Should give details about the error In the message it will appearing as er-
ror_description

details = None
None used as empty dict. Gives extra information about this error which could be parsed by the consumer
of API.

error = None
Error code should be a string. If it’s not specified the class fully qualified name will be used

get_details(debug=False)
Gives back detailed information about the error and the context. By default its an empty dictionary. The de-
bug depends on the debug parameter should give back traceback information and the positional arguments
of the exception. As this is part of the message should conform with the ErrorSchema.

get_headers()
This method gives back the header property by default or an empty dict, but you can override, then provide
special headers based on the context

get_message(debug=False)
Should give back a dictionary which will be threated the response body. The message should be conform
with the ErrorSchema.

get_status()
This method gives back the status property by default which will be threated as HTTP status code. You
can override, then provide your own status code based on the context.

headers = None
HTTP Response headers, (default None processed as empty)

schema = None
You can specify your schema class for validating your message By default the application default error
schema the ErrorSchema will be used

9.5. Error handling 21

https://pyrs-schema.readthedocs.org/en/latest/types.html#pyrs.schema.types.Object

pyrs-resource Documentation, Release 0.2.0

status = 500
HTTP status code (default=500)

uri = None
Reference for this error. You can pointing out a documentation which gives more information about how
could this error happen and how could be possible to avoid

classmethod wrap(original)
Wraps the exception gives back an Error instance. The created Error instance error property will be
updated by the fully qualified name of the original exception. You could use it for Error instances as well,
though is not recommended.

class pyrs.resource.errors.ErrorResponse(content, app=None, opts=None, request=None)
Bases: pyrs.resource.response.Response

setup()

class pyrs.resource.errors.ErrorSchema(extend=None, **attrs)
Bases: pyrs.schema.types.Object

Describe how the error response should look like. Goal of this schema is a minimalistic but usable error response.

_attrs = OrderedDict([(‘additional’, False)])

_definitions = None

_fields = OrderedDict([(‘error’, <pyrs.schema.types.String object at 0x7f42d0c8d828>), (‘error_description’, <pyrs.schema.types.String object at 0x7f42d0c8d8d0>), (‘error_uri’, <pyrs.schema.types.String object at 0x7f42d0c8d908>), (‘message’, <pyrs.schema.types.String object at 0x7f42d0c8d940>), (‘details’, <pyrs.resource.errors.DetailsSchema object at 0x7f42d0c8d978>)])

dump(ex)

exception pyrs.resource.errors.InputValidationError(*args, **details)
Bases: pyrs.resource.errors.Error

error = ‘invalid_request_format’

status = 400

exception pyrs.resource.errors.ValidationError(*args, **details)
Bases: pyrs.resource.errors.Error

error = ‘validation_error’

status = 500

9.6 Hooks

Hooks in general the way to override amend the exist functionality of app. Even you could extend the app, sometimes
much easier if you attach a hook like authentication hook and the will process the request, make request.auth available.
But also you can create your own hook handling special header values or give special error handling strategy.

The Hook class provide the skeleton of any further hooks.

class pyrs.resource.hooks.Hook
Bases: object

Hooks help to extend the functionality of application. The 3 hooks executed in different time of execution. This
class should be the base class of any further hook.

exception(request, exception)
If the function raise any exception it can be handled with this hook. return will be used as response if it
gives back any (should be Response instance or None)

22 Chapter 9. Contents:

https://pyrs-schema.readthedocs.org/en/latest/types.html#pyrs.schema.types.Object
https://docs.python.org/library/functions.html#object

pyrs-resource Documentation, Release 0.2.0

request(request)
Executed when the request is created. It can amend the request. If has any return value it will be used as
return value of the call, the the function will be not called. Can raise any exception and that will be treated
as the function exception, in that case the function will be not called.

response(response)
Executed after successful call of the function. Response object created and passed to the hook. Can modify
the response or give back a new response. Have to return the response object.

9.7 Configuration

This module contains the default configurations. The pyrs.resource.base.App config will be based on these
values.

pyrs.resource.conf.debug = False
You can get more information in response like traceback and args of exception

pyrs.resource.conf.decorate = ‘_endpoint’
This option will be used for decorators. Usage getattr(func, conf.decorate)

pyrs.resource.conf.host = ‘localhost’
Default host for the application

pyrs.resource.conf.inject_app = False
Enable/disable injecting the base.App as keyword argument

pyrs.resource.conf.inject_app_name = ‘app’
Name used for app injection

pyrs.resource.conf.inject_auth = False
Enable/disable injecting the request.auth as keyword argument

pyrs.resource.conf.inject_auth_name = ‘auth’
With this name the auth will be injected

pyrs.resource.conf.inject_body = True
Enable/disable injecting the request body

pyrs.resource.conf.inject_cookies = False
Enable/disable injecting the cookies

pyrs.resource.conf.inject_cookies_name = ‘cookies’
With this name the cookies will be injected

pyrs.resource.conf.inject_path = True
Enable/disable injecting the path arguments If a name provided the path arguments will be injected as specified

pyrs.resource.conf.inject_query = True
Enable/disable injecting the query arguments If a name provided the query arguments will be injected as speci-
fied

9.7. Configuration 23

pyrs-resource Documentation, Release 0.2.0

24 Chapter 9. Contents:

CHAPTER 10

License

GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.

0. Additional Definitions.

As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.

"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.

An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.

A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".

The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.

The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.

1. Exception to Section 3 of the GNU GPL.

25

pyrs-resource Documentation, Release 0.2.0

You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.

2. Conveying Modified Versions.

If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:

a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or

b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.

3. Object Code Incorporating Material from Library Header Files.

The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:

a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the object code with a copy of the GNU GPL and this license
document.

4. Combined Works.

You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:

a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.

b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.

c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.

d) Do one of the following:

0) Convey the Minimal Corresponding Source under the terms of this

26 Chapter 10. License

pyrs-resource Documentation, Release 0.2.0

License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.

1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.

e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)

5. Combined Libraries.

You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:

a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.

b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.

6. Revised Versions of the GNU Lesser General Public License.

The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.

27

pyrs-resource Documentation, Release 0.2.0

If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

10.1 Indices and tables

• genindex

• modindex

• search

28 Chapter 10. License

Python Module Index

p
pyrs.resource.base, 19
pyrs.resource.conf, 23
pyrs.resource.errors, 21
pyrs.resource.hooks, 22
pyrs.resource.request, 20
pyrs.resource.resource, 20
pyrs.resource.response, 20

29

pyrs-resource Documentation, Release 0.2.0

30 Python Module Index

Index

Symbols
_add_class() (pyrs.resource.base.App method), 19
_add_function() (pyrs.resource.base.App method), 19
_attrs (pyrs.resource.errors.DetailsSchema attribute), 21
_attrs (pyrs.resource.errors.ErrorSchema attribute), 22
_definitions (pyrs.resource.errors.DetailsSchema at-

tribute), 21
_definitions (pyrs.resource.errors.ErrorSchema attribute),

22
_fields (pyrs.resource.errors.DetailsSchema attribute), 21
_fields (pyrs.resource.errors.ErrorSchema attribute), 22
_get_inject() (pyrs.resource.request.Request method), 20
_inject() (pyrs.resource.request.Request method), 20
_make_rule() (pyrs.resource.base.App method), 19
_parse_value() (pyrs.resource.request.Request method),

20
_setup_injects() (pyrs.resource.request.Request method),

20

A
add() (pyrs.resource.base.App method), 19
add_rule() (pyrs.resource.base.App method), 19
App (class in pyrs.resource.base), 19

B
build() (pyrs.resource.request.Request method), 20
build() (pyrs.resource.response.Response method), 20

C
ClientError, 21
config (pyrs.resource.base.App attribute), 19

D
debug (in module pyrs.resource.conf), 23
decorate (in module pyrs.resource.conf), 23
DELETE() (in module pyrs.resource.resource), 20
description (pyrs.resource.errors.Error attribute), 21
details (pyrs.resource.errors.Error attribute), 21
DetailsSchema (class in pyrs.resource.errors), 21
dispatch() (pyrs.resource.base.App method), 19

dump() (pyrs.resource.errors.ErrorSchema method), 22

E
endpoint() (in module pyrs.resource.resource), 20
Error, 21
error (pyrs.resource.errors.Error attribute), 21
error (pyrs.resource.errors.InputValidationError at-

tribute), 22
error (pyrs.resource.errors.ValidationError attribute), 22
ErrorResponse (class in pyrs.resource.errors), 22
ErrorSchema (class in pyrs.resource.errors), 22
exception() (pyrs.resource.hooks.Hook method), 22

G
GET() (in module pyrs.resource.resource), 20
get_details() (pyrs.resource.errors.Error method), 21
get_headers() (pyrs.resource.errors.Error method), 21
get_message() (pyrs.resource.errors.Error method), 21
get_status() (pyrs.resource.errors.Error method), 21

H
handle_client_exceptions() (pyrs.resource.base.App

method), 19
handle_exception() (pyrs.resource.base.App method), 19
headers (pyrs.resource.errors.Error attribute), 21
Hook (class in pyrs.resource.hooks), 22
hooks (pyrs.resource.base.App attribute), 19
host (in module pyrs.resource.conf), 23

I
inject_app (in module pyrs.resource.conf), 23
inject_app_name (in module pyrs.resource.conf), 23
inject_auth (in module pyrs.resource.conf), 23
inject_auth_name (in module pyrs.resource.conf), 23
inject_body (in module pyrs.resource.conf), 23
inject_cookies (in module pyrs.resource.conf), 23
inject_cookies_name (in module pyrs.resource.conf), 23
inject_path (in module pyrs.resource.conf), 23
inject_query (in module pyrs.resource.conf), 23
InputValidationError, 22

31

pyrs-resource Documentation, Release 0.2.0

P
PATCH() (in module pyrs.resource.resource), 20
POST() (in module pyrs.resource.resource), 20
PUT() (in module pyrs.resource.resource), 20
pyrs.resource.base (module), 19
pyrs.resource.conf (module), 23
pyrs.resource.errors (module), 21
pyrs.resource.hooks (module), 22
pyrs.resource.request (module), 20
pyrs.resource.resource (module), 20
pyrs.resource.response (module), 20

R
Request (class in pyrs.resource.request), 20
request() (pyrs.resource.hooks.Hook method), 22
resources (pyrs.resource.base.App attribute), 19
Response (class in pyrs.resource.response), 20
response() (pyrs.resource.hooks.Hook method), 23
RPC() (in module pyrs.resource.resource), 20

S
schema (pyrs.resource.errors.Error attribute), 21
set_function() (pyrs.resource.base.App method), 19
setup() (pyrs.resource.errors.ErrorResponse method), 22
setup() (pyrs.resource.response.Response method), 20
setup_hooks() (pyrs.resource.base.App method), 19
status (pyrs.resource.errors.ClientError attribute), 21
status (pyrs.resource.errors.Error attribute), 21
status (pyrs.resource.errors.InputValidationError at-

tribute), 22
status (pyrs.resource.errors.ValidationError attribute), 22

T
transform_exception() (pyrs.resource.base.App method),

19

U
uri (pyrs.resource.errors.Error attribute), 22

V
ValidationError, 22

W
wrap() (pyrs.resource.errors.Error class method), 22

32 Index

	What is this package for
	Nutshell (notice that, it would be the achivement)
	Features
	Installation
	Dependencies
	Important caveats
	The ecosystem
	Contribution
	Contents:
	Application
	Resource
	Response handling
	Response handling
	Error handling
	Hooks
	Configuration

	License
	Indices and tables

	Python Module Index

